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Results of numerical computations are presented of time-dependent three-dimensio- 
nal convection flows in a horizontal layer heated from below which evolve from the 
oscillatory blob instability of steady two-dimensional rolls. It is shown that the heat 
transport is typically increased in the transition to blob convection. Oscillatory blob 
convection exists in the forms of standing or travelling blob convection. The latter 
type of solution represents the stable form bifurcating supercritically at the Rayleigh 
number RII for the onset of the oscillatory blob instability. In contrast to standing 
blob convection travelling blob convection exhibits a mean flow. 

1. Introduction 
Rayleigh-Btnard convection in a layer heated from below has become one of the 

principal examples in fluid dynamics of the evolution from simple to complex flows 
with increasing control parameter. When the properties of the layer are symmetric 
about the midplane, flows in the form of two-dimensional rolls are found as stable 
steady solutions for perfectly conducting rigid boundaries. We shall call these rolls 
secondary solutions of the problem since they replace the basic state of the layer 
when the Rayleigh number R exceeds its critical value. As the control parameter R 
is increased further, a number of different transitions is encountered depending on 
the Prandtl number of the fluid. The instabilities causing these transitions have been 
investigated in a number of papers starting with the early work of Busse (1967) up 
to the latest papers on the subject by Bolton, Busse & Clever (1986) and by Clever 
& Busse (1990). For reviews we refer to Busse (1981) and to Busse & Clever (1990). 
The analysis of the tertiary forms of convection evolving from these instabilities has 
not yet been completed. Steady bimodal convection in high Prandtl number fluids 
has been investigated by Frick, Busse & Clever (1983) and travelling wave convection 
realized in low Prandtl number fluids is described by Clever & Busse (1987, 1989, 
1990). At intermediate Prandtl numbers steady knot convection represents another 
stable tertiary state of the system (Clever & Busse 1988). Finally, in this paper results 
for oscillatory blob convection will be presented which competes with knot convection 
in the parameter space of the problem. Tertiary states induced by the skewed varicose 
instability (Busse & Clever 1979) do not seem to lead to states that are steady or time 
periodic. Instead, experimental observations (Gollub, McCarriar & Steinman 1982) 
and numerical simulations (Zippelius & Siggia 1983) tend to suggest a transition into 
an irregular state of convection which is aperiodic in space and time. For a recent 
study of the evolution of skewed varicose disturbances in the presence of stress-free 
boundaries we refer to Busse, Kropp & Zaks (1992). 
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While some properties of the thermal blob instability have already been discussed 

by Bolton et al. (1986) the finite-amplitude properties of this type of oscillatory 
convection are of interest for several reasons. Nearly periodic eruptions of thermal 
blobs from boundary layers have often been observed in experiments and have 
been described in Howard's (1966) boundary-layer model of turbulent convection. 
The thermal blobs represent a main feature in high Rayleigh number convection as 
shown in modem experiments by Zocchi, Moses & Libchaber (1990) and Solomon 
& Gollub (1990). The basic mechanism of this time-dependent form of convection 
can be described in a quantitative way most easily in the form of oscillatory blob 
convection. Since thermal blob convection occurs primarily in the form of a wave 
travelling along the basic convection roll, a preferred direction is introduced. A mean 
flow associated with the wave becomes possible as will be shown in this paper. This 
effect may explain some puzzling experimental observations since all other instabilities 
of convection rolls do not seem to lead to a generation of mean flows in fluids with 
Prandtl numbers of the order two or larger. Oscillatory thermal blob convection has 
also been found in numerous numerical simulations, for instance in those of Curry 
et al. (1984) for the case of stress-free boundaries or in the work of Lennie et al. 
(1988) on infinite Prandtl number convection. In the present paper a more systematic 
approach to the problem is used and the phenomenon of travelling blob convection 
is described for the first time. 

Because the numerical methods employed in the present analysis are the same as 
those employed in previous work (Clever & Busse, 1987, 1988), only a brief outline 
of the mathematical formulation of the problem and of the numerical procedures is 
given in $2. 

R. M. Clever and F. H. Busse 

2. Mathematical description of the problem 
We consider a horizontal fluid layer of height h with rigid upper and lower 

boundaries that are kept at the constant temperatures TI and T2, respectively. Using 
h as length scale, h 2 / ~  as time scale, where K is the thermal diffusivity, and (Tz - T , ) / R  
as temperature scale we can write the basic equations in their usual (see, for instance, 
Busse 1981) dimensionless form, 

(2 .1~)  

v * v  = 0, (2.lb) 

(g + v *V) 8 = k u + V28. (2.lc) 

The Boussinesq approximation has been assumed in which the variation of density 
is neglected except in the gravity term where a linear dependence of the density on 
temperature is taken into account. 8 denotes the deviation of the temperature from 
the static distribution. Since the velocity field u is solenoidal, we can use the following 
general representation : 

u = V x (V x k q ) + V  x k v  + Ui 
where k is the vertical unit vector parallel to the z-axis of the Cartesian system of 
coordinates that we shall use and U ( z )  describes a mean flow in the direction of 
the horizontal unit vector i. The mean flow could be presented through the stream 
function w. But in that case tp would no longer be a bounded function (Schmitt & 
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von Wahl 1992). By taking the z-components of the (curl)2 and of the curl of the 
equation of motion we obtain the following equations for cp and y:  

(2.2a) 

(2.2b) 

where A2 denotes the horizontal Laplacian, A2 = a2 /ax2  + d2/ay2. The heat equation 
( 2 . 1 ~ )  can be rewritten in the form 

a 
at  

V4A2cp - A28 = P-'{k.V x [V x (u'VU)] + - V 2 A 2 ~ } ,  

V2A2y = P-'{ -k - V x [U * VU] + -A2y} 
a 
at  

(2.2c) 
a 
at V 2 8 - R A 2 c p = ( V x ( V x k c p ) + V x k y + U i ) * V O + - O  

The Rayleigh number R and the Prandtl number P are defined by 

where y is the thermal expansivity, g denotes the acceleration of gravity and v is the 
kinematic viscosity. The mean flow U obeys the equation 

(2.2d) 

where the bar indicates the average over the (x,y)-plane. The boundary conditions 
are given by 

(2.3) a 1 
aZ cp = -cp = y = 8 = U = 0 at z = kZ. 

As in previous work on three-dimensional convection (Clever & Busse, 1987, 1988) 
we use the Galerkin method for solving equations (2.2) together with conditions (2.3). 
We thus expand all dependent variables into a complete set of functions satisfying 
the boundary conditions 

cp = C{al,(t) cos la,(x - ct)  + al,(t) sin la,(x - ct)}  cos(rnayy)gn(z), ( 2 . 4 ~ )  

8 = x{6,,(t) cos la,(x - ct) + 61mn(t) sin la,(x - ct)]  cos(rna,y) sin nz(z + f), (2.4b) 

y = C{&,,(t) sin la,(x - ct) + El,(t) cos la,(x - ct)}  sin(rna,y) sin nn(z + i), ( 2 . 4 ~ )  

u = C Un(t) sin nn(z + 41, (2.4d) 

I n n  

I m n  

h n  

n 

where g,(z) are the Chandrasekhar functions defined by 

sinh( /3jnz)( sinh f/?jn)-l - sin( /3;,z)( sin f /3; ,,)-' for even n 
for odd n 

and where the values f ly and y v  are determined as positive roots of the equations 
{ cosh(r f (,,l,z)(cosh f r f(n+l))-l - COS(Y 1. (n+l)Z)(Cos ;r f (n+l))-l 

gnb) = 

coth ifl - cot 4/3 = 0 , tanh f y  + tan $ y  = 0 
such that gn = g;  = 0 holds at z = +0.5 

The time-dependence appears twice in each term of the presentation (2.4), but one of 
these dependences will be dropped in both cases of the following analysis. In the case 
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of standing oscillations the phase velocity c vanishes, while in the case of travelling 
waves all coefficients 21mn,hl,,61mn etc. can be regarded as time independent, since 
the entire time dependence of the travelling waves vanishes in the reference frame 
moving with c in the x-direction. 

In writing expressions (2.4) we have used the property that the disturbances leading 
to the oscillatory blob instabilities (Bolton et al. 1986) preserve the vertical symmetry 
planes, y = mn/aY for m = 0, +1,.  . ., of the two-dimensional steady convection rolls. 
From this symmetry it also follows that a mean flow can only be directed in the 
x-direction as we have anticipated in formulating the representations (2.1), (2.4). 

After multiplying equations (2.2) by the corresponding expansion functions of 
expressions (2.4) and averaging the result over the fluid layer, we obtain a system 
of ordinary differential equations in time for the coefficients &I,, hlmn, 61mn . . .. This 
system can be integrated in time numerically after a truncation has been introduced. 
We shall neglect all coefficients and corresponding equations that satisfy 

l + m + n > N T .  (2.5) 

By comparing solutions obtained for NT with those for which NT - 2 was used, 
we can check the quality of the numerical approximation. Typically NT was chosen 
such that the Nusselt number changed by less than 1% in this comparison. For the 
numerical integration in time the Crank-Nicolson method was used. In some cases 
the Adams-Bashforth method was used for the purpose of comparisons. Provided 
the time step was chosen sufficiently small, typically At = the results obtained 
from both methods agree very well. In the case of the travelling blob convection 
time-independent coefficients a/,,,,, etc. can be assumed, but the finite phase velocity 
c must be determined. Because a shift in time t' = t + to corresponds to a change in 
the coefficients &/mn, hlmn, etc., 

almn = 21mn cos cto - &Imn sin cto, 
hi,,,,, = almn sin cto + &Irnn cos cto, 

we can choose to such that one coefficient, say 6112 vanishes. By using this freedom 
of choice for the phase we obtain the equation corresponding to the coefficient hlI2  
as an equation for c. The system of nonlinear algebraic equations can then be solved 
by a Newton-Raphson method in the same way as in the case of steady convection 
flows. 

The fact that travelling blob convection is equivalent to steady convection in the 
moving frame of reference permits a straightforward application of the usual stability 
analysis of steady convection. By imposing infinitesimal disturbances of the form 

A /  

6 = C iil,,,,, exp{i(la, + d)(x  - c t )  + i(ma, + b)y + ot)gn(z) ,  (2.6a) 

8 = 61, exp{i(la, + d)(x - c t )  + i(ma, + b)y + ot} sin nn(z + i), (2.6b) 

@ = C El,,,,, exp{i(la, + d)(x - c t )  + i(maY + b)y + at} sin nn(z + f) ( 2 . 6 ~ )  

onto the travelling blob solutions of the form (2.4) with constant coefficients a/,,,,,, . . . 
we obtain a linear homogeneous system of equations for the coefficients arm, 61mn, Zlmn 

with the growth rate o as the eigenvalue. For a given travelling blob solution 
characterized by the parameters R, P ,  c, a,, ay the maximum real part or of o must be 

imn 

LmF 

I,W 
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determined as a function of the Floquet parameters d and b. When a positive gr exists, 
the travelling blob solution is unstable; otherwise it is regarded as stable. Owing to 
the complex notation used in expressions (2.6) the subscripts I ,  rn run through positive 
as well as negative integer values and the truncation condition (2.5) thus has to be 
applied for 1 1 I and 1 rn 1 instead of 1 and rn. Accordingly the system of disturbance 
equations becomes approximately four times as large as the system for the stationary 
travelling blob solution. Fortunately, for many instabilities 0, reaches its maximum 
for b = d = 0 in which case considerable simplifications of the stability analysis 
become possible based on the symmetries of the travelilng blob solution. These 
simplifications will be discussed in $5. 

3. Travelling blob convection 
The time-dependent three-dimensional convection flows considered in this paper 

arise from the BO2-type oscillatory blob instability of convection rolls that was found 
by Bolton et al. (1986). Two blobs of fluid that are slightly hotter and two blobs that 
are slightly colder than the average temperature at their instantaneous position travel 
around the convection rolls. In addition the phase of this oscillation varies with the 
wavenumber a, along the axis of the rolls. Because we are focusing on oscillations 
with two blobs we can use the symmetry that all coefficients &mn, ;Invr, h / m n ,  r)/mn, t / m n ,  E/mn 

vanish unless 
I + rn + n = even integer. (3.1) 

This includes, of course, for 1 = 0 the basic symmetry of the convection rolls. Because 
of the translation and reflection symmetries of the convection rolls along their axis, the 
oscillatory instability can lead to either travelling waves propagating in the positive 
or the negative x-direction along the rolls or it can lead to a standing oscillation. We 
first consider the travelling type of oscillatory blob convection. In choosing the values 
of the parameters R,P,ax,ay we are guided by the results of Bolton et al. (1986) 
who have computed the growth rates of the strongest growing blob instabilities as a 
function of a, for given steady roll solutions characterized by fixed values of R, P and 
ay. The results show that the B02-instability corresponding to two circulating blobs 
occurs in the regime 2 d P < 10 for values of a,, of the order 2 or lower. Since the 
growthrates exhibit a rather broad maximum as a function of ax, we have selected a 
few values which we expect to be typical for eventual experimental realizations. 

The geometrical configuration of the hot blobs circulating around the convection 
roll is sketched in figure 1. Intermediate between the two bands of hot blobs there are 
analogous bands of cold blobs that are not shown in the figure. The time dependence 
induced by the circulating blobs is shown in figure 2. The first plot of isotherms 
in the time sequence of seven plots exhibits rising and descending plumes that are 
colder than their time average while the thermal boundary layers near the feet of the 
plumes are warmer than their time average. We use the term ‘plumes’ we refer to 
the cross-section of the steady hot and cold sheets of fluids rising and descending, 
respectively, on either side of the convection roll. The plumes become colder than their 
time average because parcels or blobs of colder than average fluid travel along them 
strengthening the descending cold plume and weakening the ascending hot plume. 
As a consequence the strong cold plume accelerates the descending motion while the 
weak plume decelerates the ascending motion as is indicated in the corresponding 
streamline plot on the right half of the figure. As time progresses the situation 
reverses. The hot blobs from the boundary layer enter the respective plumes and 
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FIGURE 1. Sketch of travelling blob convection at a given instant in time. Regions where the fluid 
near the boundary of a roll is hotter than its time-averaged temperature are indicated by the bands 
on the roll boundary. The pattern propagates in the positive x-direction. 

cause a strengthening of the hot and a weakening of the cold plume. The place where 
the streamlines come close together has now moved to the rising plume. The original 
cold blobs of the plumes have entered the thermal boundary layer causing a thinning 
of the bottom boundary layer and a thickening of the top boundary layer as is evident 
from the third and fourth plots of the sequence. In the remaining plots the situation 
reverses again until the seventh plot exhibits the same pattern as the first plot. Instead 
of interpreting the seven plots as a sequence in time at a given position in x we could 
also consider them, of course, as plots of the planes x = na/3a,, n = 0,1,. . . , 6  at a 
given instant of time. 

In order to provide a better impression of the three-dimensional nature of travelling 
blob convection we exhibit its pattern in figures 3 and 4 in planes orthogonal to the 
planes of figure 2. In figure 3 the pattern of travelling blob convection is shown 
through plots of the x,y-dependence of several variables. Since the pattern is steady 
with respect to the reference frame travelling with the speed c = o / a ,  in the negative 
x-direction, the same process discussed in the case of figure 2 can be followed here 
by moving towards higher values of x.  In particular the plots for the plane z = -0.4 
show clearly the movements of hot blobs (rising motion) and cold blobs (descending 
motion) towards the rising plumes. 

The strengthening and weakening of the hot and cold plumes can also be seen 
in the isotherms in the vertical planes y = 0 and y = 7c/ay, respectively, shown in 
figure 4. Because the pattern is moving steadily, the isotherms have been drawn for 
a single instant in time only. Since the pattern moves towards the left, the time 
dependence at a fixed position can be obtained by moving towards increasing x. For 
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FIGURE 2. Isotherms (left) and streamlines &p/ay = const. (right) in the plane x = 0 of travelling 
blob convection with R = 35000,P = 7,ax = ag = 2.0. Time increases from top to bottom in steps 
of At = 0.00567 such that about a period, Tp = 0.034, has passed between the first and the last plot. 
The y-coordinate runs left to right from 0 to 2x/a,  in each plot. Here and in the following figures 
all contour lines are plotted at equi-distant intervals with solid (dashed) lines denoting positive 
(negative) values. The dotted line indicates zero. Wherever a dotted line is not shown, the solid line 
adjacent to the dashed lines denotes zero. 

completeness the isotherms are also shown for the vertical plane y = 71/2ci where only 
the thickening and thinning of the thermal boundary layers can be seen. Also shown 
in figure 4 are the lines of constant dcp/dx which describe the part of motion that 
recirculates within the planes y =const. An important property of this motion is a 
finite Reynolds stress mx generated by the inclination of the rising and descending 
streamlines with respect to the vertical. As indicated by the superscript x this average 
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FIGURE 3. Lines of constant vertical velocity in the planes z = -0.4 (top row) and z = 0 (second 
row) and isotherms in the planes z = 0 (third row) and z = -0.4 (bottom row) are shown for 
travelling blob convection with the same parameters as in figure 2. The left plot corresponds to the 
same time as the second plot of figure 2, while the right plot corresponds to a time 0.01133 later. 

is taken over lines of constant y and z .  The Reynolds stress contributes to the 
non-vanishing x-average of the x-component of the velocity field which is shown in 
figure 5. As can be seen from the plots, a negative x-component dominates at y = 0 
(left side of the plots) while a somewhat weaker positive x-velocity can be seen at 
y = z/ay corresponding to the middle of the plots. Since the x-velocity v, satisfies 
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RGURE 4. Isotherms (left) and streamlines d q / a x  = const. (right) in the planes y = 0, a/2a,, x / a y  
(from top to bottom) for travelling blob convection with same parameter values as for figure 2. The 
time corresponds to the left plots of figure 3 and x runs left to right from 0 to 2a/a, in each plot. 

the symmetry relationship 

ux(x, Y ,  z ,  t )  = vx(x + d a x ,  -Y + d a y ,  -2, t )  (3.2) 

a mean flow in the negative x-direction results. In other words, the 'mean' Reynolds 
stress defined by the horizontally averaged quantity 0,1], is positive (negative) for 
most of the upper (lower) half of the layer in the case of a wave travelling in the 
negative x-direction. This phenomenon is caused by the fact that the rising plume 
tends to concentrate the flow towards the upper boundary, while the opposite is done 
by the descending plume. Figure 6 shows the mean flow created in this fashion along 
the axis of the rolls in the direction of the propagating wave. 

While we have emphasized so far the circulation of blobs with the basic roll velocity, 
there is another aspect of the thermal blob mechanism which was first proposed by 
Howard (1966). Since heat transport of the rolls does not increase sufficiently with 
increasing Rayleigh number R to keep the thermal boundary layers stable in terms 
of the Rayleigh criterion for the stability of a fluid layer heated from below, periodic 
eruptions from the thickening thermal boundary layers must be expected. These 
eruptions may be identified with the ridges of vertical motion seen in the plane 
z = -0.4 of figure 3. Oscillatory blob convection may thus be regarded as a kind 
of resonance phenomenon between the periodic eruption from the thermal boundary 
layers and a simple fraction of the circulation period of the basic roll velocity as 
has been observed in a related context by Lennie et al. (1988). Similar relationships 
can be seen in other types of oscillatory convection with circulating thermal blobs 
as for example in oscillatory knot convection (Clever & Busse, 1989) or oscillatory 
bimodal convection (Clever & Busse, 1994). As in these latter cases, the thermal 
blobs contribute significantly to the convective heat transport as is evident from the 
comparison of the heat transports of two-dimensional rolls and of three-dimensional 
blob convection shown in figure 7. 
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FIGURE 5. Lines of constant x-velocity, uxr in the planes x = nn/4u, for n = 0, ..., 4 (from top 
to bottom) for travelling blob convection with P = 2.5, R = 35000, a, = ay = 2.0. Solid (dashed) 
lines indicate positive (negative) values except for the solid line adjacent to the dashed ones which 
indicates zero. 

The oscillatory blob solutions bifurcating from the two-dimensional roll solutions 
are also characterized by a more efficient release of potential energy and a corre- 
sponding increase of the kinetic energy 

(3.3) 
of the poloidal component of motion which parallels the increase of the Nusselt 
number as shown in figure 8. Because of the three-dimensional nature of oscillatory 
blob convection the toroidal component of the velocity described by the function q~ 
does not vanish as in the case of rolls. The kinetic energy 

(3.4) 
associated with the function I,O stays relatively small in comparison to the kinetic 
energy of the poloidal component of motion as is evident from a comparison of 

Epol = ;(I v x (V x krp) 1 2 )  

Em, = +(I v x kqI 1 2 )  
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FIGURE 6. Profiles of the mean flow connected with blob convection travelling in the negative 
x-direction with P = 7,aX = my = 2.0 and with R = 28 x lo3 (solid), R = 35 x lo3 (dashed), 
R = 50 x lo3 (dash-dotted). Because of the symmetry with respect to z = 0 only the upper part of 
the profile is shown. The insert shows the dependence near the boundary, z = 0.5, with an enlarged 
scale. 

the values shown in figures 8 and 9. The kinetic energy of the mean flow shown in 
figure 10 increases approximately in proportion to ( R -  RII)' where RII is the Rayleigh 
number for the onset of the respective blob oscillation. This dependence must be 
expected since the mean flow is generated by the product of velocity components 
with a sinusoidal dependence on x which grow with ( R  - R11)'l2. The increase of the 
mean flow amplitude in proportion to R - RII shown in figure 6 also conforms to 
this expectation. The same dependence has been found in the mean flow generated 
by travelling waves in low Prandtl number convection (Clever & Busse, 1989). The 
frequency of oscillation of the travelling blobs is also displayed in figure 10. It 
increases in good approximation with R" where n is a number slightly larger than 4 ; 
in the case of figure 10 we find n = 0.54. This is nearly the same dependence with 
which the basic roll velocity increases as can be seen from figure 8 where the kinetic 
energy of the roll component increases more strongly than in proportion to R. This 
property emphasizes the fact that the blobs are carried around with the circulation 
of convection rolls. 

4. Standing oscillatory blob convection 
For the numerical study of standing oscillatory blob convection the forward inte- 

gration in time of the basic equations (2.2) becomes necessary after the representation 
(2.4) with c = 0 has been introduced. Because of the much higher numerical effort 
the number of solutions that has been obtained is lower than in the case of travelling 
blob convection. Scme reduction of the numerical effort can be obtained because 
all coefficients iilrnn, br,,, Elrnn can be dropped from the representation (2.4) because 
without losing generality the symmetry plane x = 0 can be assumed. 

As in other cases of standing oscillations, standing blob convection can be regarded 
as the superposition of two waves travelling in opposite directions. An impression 
of the standing oscillations can be gained from the variations in time of the vertical 
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FIGURE 7. Nusselt number as a function of R, given by Nu(R)  - 1, for two-dimensional convection 
rolls (thin lines) and for travelling blob convection (bifurcating thick lines). The cases P = 2.5 
(dash-dotted line), P = 4 (dashed lines), P = 7 (solid lines) and P = 10 (dash-doubledotted Line) 
are shown with a,, = 2.0 in all cases. For the travelling blob convection the three thick solid 
curves correspond to a, = 2.5,2.0,1.5 (from top to bottom). The thick dashed curve corresponds to 
a, = 2.0. Also shown are the Nusselt numbers for standine blob convection in the cases a, = 2.5 (0) - 
and a, = 2.0 (0) with P = 7,a,, = 2.0 in both cases. 

RGURE 8. Kinetic energy of the poloidal component of motion, Ewl, as a function of R for 
two-dimensional rolls and for travelling blob convection for the same cases as in figure 7. As in 
figure 7 the symbols 0 and 0 refer to cases of standing blob convection. 

velocity on three horizontal planes in the convection layer shown in figure 11. Only 
one half of the period of the oscillation is covered by the plots since the pattern is 
repeated in the second half of the period except for a shift by a/a, along the axis 
of the original rolls. The variations of the isotherms in the plane x = 0 are shown 
in figure 12 for a full period of oscillation. The time dependence of the isotherms is 
similar to that exhibited by the travelling blob convection shown in figure 2 at a given 
plane x = const., but it is less pronounced because of the lower Rayleigh number 



Standing and travelling oscillatory blob convection 

2 ,  . 

30000 MOO0 
R 

50 OOO 

267 

FIGURE 9. Kinetic energy of the toroidal component of motion, Em,, for the same cases as in 
figures 7 and 8. In the case of the solid lines the uppermost, middle, and lowermost ones refer to 
a, = 2 . 0 , ~ ~  = 1.5 and a, = 2.5, respectively. 

40000 50 OOO 
R 

FIGURE 10. Kinetic energy of the mean flow component, Emf ,  (thin lines, left ordinate) and 
the frequency w of oscillations (thick lines, right ordinate) for the same cases of travelling blob 
convection as in figures 7 and 8. In the case of the solid lines Emf increases and o decreases with 
increasing u,. 

chosen in figure 12. The time dependence of the isotherms in the plane x = n/ax is 
the same except that it is shifted in phase by half a period. On the other hand the 
isotherms in the plane x = n/2ax show very little time dependence because this plane 
nearly represents the surface on which the standing oscillation vanishes. The plots 
of the x-velocity in the plane x = n/2ax shown in figure 13 are rather similar to the 
corresponding plots for travelling blob convection shown in figure 5. Because of the 
symmetry 

(4- 1) ux(x, Y ,  2, t )  = -vx(--x + n/2ax, Y ,  z, t + T,/2) 
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FIGURE 11. Lines of constant vertical velocity for standing blob convection in the planes 
z = -0.4 (upper row), z = 0 (middle row), and z = -0.4 (lower row) for 5 equidistant times 
such that a half-period, OST, = 0.0192, of oscillation is covered in each row. Parameters are 
P = 7, R = 27000, ax = a,, = 2.0. 

where Tp is the period of oscillation, standing blob convection does not give rise to a 
mean flow in the x-direction. The oscillations of the x-velocity reach a maximum in 
the planes x = ( n  + ~ ) z / u , ,  but vanish in the planes x = nn/u, for all integer values 
n. 

The close similarity between standing and travelling oscillations is also evident 
from the Nusselt numbers and kinetic energies shown in figures 7-10. The standing 
blob solutions do not exhibit a mean flow component and for this reason the energy 
of the toroidal component of motion is also lower than in the case of the travelling 
blob solution. This property is a result of the fact that part of the toroidal component 
is generated through the advection of the mean flow by the basic rolls. 

5. Instabilities of oscillatory blob convection 
The transition from two-dimensional roll convection to oscillatory blob convection 

in its two manifestations represents a typical Hopf bifurcation in the presence of 
symmetry. Because a Hopf bifurcation is characterized by the property that an 
eigenvalue and its complex conjugate cross the imaginary axis simultaneously, there 
must be two time-dependent solutions. The translation invariance along the axis 
of the rolls and the reflection symmetry with respect to any plane x = const. are 
the symmetries governing the Hopf bifurcation. Accordingly the bifurcating time- 
periodic solutions assume either the form of a travelling wave or of a standing wave 
(Schecter 1976; Golubitsky & Stewart 1985). In the latter paper it has also been 
demonstrated that just one of the two solutions is stable in the case when both 
bifurcations are supercritical. In terms of the coupled amplitude equations discussed 
in the mathematical context, it is found that the solution with the larger amplitude 
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FIGURE 12. Isotherms in the plane x = 0 for standing blob convection with 
P = 7, R = 28000,a, = 2.5,aY = 2.0 at equally distant times t,  = n x 0.0063 with n = 0,. . . ,6 
(from top to bottom) such that about one period, Tp = 0.0378, is covered by the plots. 
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FIGURE 13. Lines of constant x-velocity, ux,  in the plane x = n/2ux for standing blob convection 
with P = 2.5, R = 3oooO,a, = 2.5,~~ = 2.0 at equally distant times t, = n x 0.005 with n = 0,. . .,4 
such that about one half of the period Tp = 0.040 is covered by the plots. 

is preferred. As we shall discuss in the following, the stability analysis of the blob 
solutions confirms this expectation. 

The stability analysis of travelling blob convection is fairly straightforward once 
the class of disturbances of the form (2.6) is reduced to those with the Floquet 
wavenumbers b = d = 0. Since the blob solutions are characterized by fields cp, 0 that 
are symmetric in y, the disturbance fields @, 8 with b = d = 0 separate into those that 
are symmetric ( C )  or antisymmetric ( S )  in the y-direction. The y-symmetry of the 
fields y, ij3 is, of course, always opposite to that of 9, @, respectively. The disturbances 
also separate into those with vanishing coefficients for I + m + n = odd (E) and those 
with vanishing coefficients for 1 + m + n = even (0). We thus have to consider four 
different classes 

EC,  E S ,  OC,  0s 
of disturbances. Among these the first class, EC,  exhibits the same symmetries as 
the travelling blob solution. The results of the stability calculations are given in 
table 1 in terms of the critical Rayleigh number Rrrr at which the real part of 
the growth rate goes through zero. In some cases when the growth rate exhibits a 
particular strongly varying real part the second lowest Rayleigh number for the onset 
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P ax ay Nuat R = 4 x  l@ Symmetryof 
for NT = 14(12) 

2.5 2.0 2.0 oc 
4 2.0 2.0 3.3949 (3.4079) 0s 
7 1.5 2.0 3.3980 (3.4089) EC 

2.0 2.0 3.4169 (3.4285) oc 
oc 

2.5 2.0 3.4586 (3.4513) oc 
oc 

critical dist. 
RIII x lo4 Oi % x lo3 

3.23 224 1.5 
3.70 247 1.4 
2.69 166 0.2 
4.54 228 0.1 
4.63 516 1.1 
4.23 219 0.2 
4.49 295 1.1 

TABLE 1. Instabilities of travelling blob convection 

of a disturbance has also been indicated since it may be observed as the preferred 
instability in experiments. NT = 14 has been used for the travelling blob solution as 
well as for the stability analysis. The comparison of the Nusselt numbers for NT = 12 
and NT = 14 at the fairly high Rayleigh number R = 4 x lo4 provides a measure for 
the quality of the approximation. 

We can also investigate the stability of the standing blob convection by superim- 
posing disturbances with the same horizontal periodicity interval , but with x- and 
y-symmetries differing from those of standing blob convection and by following their 
temporal evolution with the help of a forward integration in time through a full 
period of oscillation. In this way it has been found that the standing oscillations are 
always unstable with respect to travelling blob convection. This result is in qualitative 
agreement with the theory of Golubitsky and Stewart (1989), since the latter solution 
exhibits a somewhat higher amplitude than the former solutions, at least as far as the 
kinetic energy of motion is concerned, according to the results displayed in figures 8 
and 9. 

6. Discussion 
In contrast to convection in a horizontal layer of a low Prandtl number fluid for 

which much observational evidence and considerable theoretical understanding for 
travelling wave convection has been achieved (for a review see Busse 1981), there 
do not seem to be any reported measurements of the properties of travelling blob 
convection in fluids with Prandtl numbers in excess of unity. In fact it has been 
surprising to the authors of this paper to recognize the preference for this type of 
propagating convection wave. The parameter range where travelling blob convection 
can be expected is not very large, of course, and other instabilities leading from two- 
dimensional rolls to three-dimensional convection are more commonly encountered in 
the relevant Prandtl number range. But in a water layer in which rolls of sufficiently 
large wavelength have been induced through the method of Chen & Whitehead (1968) 
it should be possible to realize travelling blob convection. For a water layer of 1 cm 
depth at room temperature a Rayleigh number of the order of 4 x 10'' is reached for 
TZ - TI w 3 "C and oscillations with a period of 20s should be observable. The mean 
flow would have a magnitude of only 1 mm min-' in this case, but would increase 
strongly with the Rayleigh number. 

There is some evidence that a process akin to the mechanism of travelling blob 
convection becomes more prevalent at higher Rayleigh numbers. Travelling tilted 
plumes similar to those shown in figure 4 have been observed by Krishnamurti & 
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Howard (1981) in a water layer for Rayleigh numbers above 2 x lo6. Because of 
this high Rayleigh number at which convection in a water layer is already quite 
turbulent, a direct comparison with the calculations of this paper is not possible. 
On the other hand, the mechanism of travelling tilted plumes and of mean flow 
generation discussed in $3 is quite different from the two-dimensional model proposed 
by Howard & Krishnamurti (1986) or the two-dimensional analysis of Prat, Massaguer 
& Mercader (1995). There is no evidence that there is a two-dimensional instability 
of convection rolls associated with a mean flow in a non-rotating convection layer at 
Rayleigh numbers below the onset of three-dimensional instabilities. The generation 
of mean flows by nearly two-dimensional convection rolls driven by centrifugal 
buoyancy in a rotating cylindrical annulus is a well-known phenomenon that has 
been explored experimentally and theoretically (Busse & Hood, 1982; Or & Busse 
1987). But in non-rotating layers such a mechanism is always preceded by the 
transition to three-dimensional forms of convection. Of course, the two-dimensional 
model of Howard & Krishnamurti (1986) was not meant to predict the detailed spatial 
structure of the convection with mean flow and may be more directly applicable for 
convection in a Hele-Shaw cell for which independent observational evidence exists. 
It is also important to note in connection with the travelling blob mechanism that 
the fluctuating component of motion along the axis of the basic rolls is mainly 
antisymmetric in z and attains even higher amplitudes than the mean flow. 

Oscillatory thermal blobs are most commonly observed when they are preceded by 
a transition to three-dimensional convection at a lower Rayleigh number. The transi- 
tions from steady to oscillatory knot convection or from steady to oscillatory bimodal 
convection are the best known examples (Clever & Busse 1988, 1994). Because of the 
absence of a translation-invariant dimension, travelling blob convection is prohibited 
in these cases. The oscillatory thermal blobs represent a very robust phenomenon, 
however, which is still evident in turbulent convection. Under certain circumstances 
it seems that even the travelling wave mechanism, together with the mean flow effect, 
can overcome the constraints imposed by the absence of the translation-invariant 
dimension in turbulent convection and give rise to the phenomenon observed by 
Krishnamurti & Howard (1981). 

For future research it will be interesting to investigate the patterns of convection 
which replace travelling blob convection after the onset of the instabilities listed in 
table 1. Asymmetric traveling waves or vacillating waves of blob convection are likely 
to be introduced by these bifurcations. Mechanisms such as the mean flow generation 
mechanism tend to persist, however, and we thus expect mean flows to be associated 
with those more complex forms of convection. 

The research reported in this paper has been supported under Grant ATM 92-09335 
of the US National Science Foundation and by a NATO travel grant. 
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